skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Liu, Jiting"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Sleep is a vital physiological state that significantly impacts overall health. Continuous monitoring of sleep posture, heart rate, respiratory rate, and body movement is crucial for diagnosing and managing sleep disorders. Current monitoring solutions often disrupt natural sleep due to discomfort or raise privacy and instrumentation concerns. We introduce PillowSense, a fabric-based sleep monitoring system seamlessly integrated into a pillowcase. PillowSense utilizes a dual-layer fabric design. The top layer comprises conductive fabrics for sensing electrocardiogram (ECG) and surface electromyogram (sEMG), while the bottom layer features pressure-sensitive fabrics to monitor sleep location and movement. The system processes ECG and sEMG signals sequentially to infer multiple sleep variables and incorporates an adversarial neural network to enhance posture classification accuracy. We fabricate prototypes using off-the-shelf hardware and conduct both lab-based and in-the-wild longitudinal user studies to evaluate the system's effectiveness. Across 151 nights and 912.2 hours of real-world sleep data, the system achieves an F1 score of 88% for classifying seven sleep postures, and clinically-acceptable accuracy in vital sign monitoring. PillowSense's comfort, washability, and robustness in multi-user scenarios underscore its potential for unobtrusive, large-scale sleep monitoring. 
    more » « less
    Free, publicly-accessible full text available September 3, 2026
  2. The accurate forecast of algal blooms can provide helpful information for water resource management. However, the complex relationship between environmental variables and blooms makes the forecast challenging. In this study, we build a pipeline incorporating four commonly used machine learning models, Support Vector Regression (SVR), Random Forest Regression (RFR), Wavelet Analysis (WA)-Back Propagation Neural Network (BPNN) and WA-Long Short-Term Memory (LSTM), to predict chlorophyll-a in coastal waters. Two areas with distinct environmental features, the Neuse River Estuary, NC, USA—where machine learning models are applied for short-term algal bloom forecast at single stations for the first time—and the Scripps Pier, CA, USA, are selected. Applying the pipeline, we can easily switch from the NRE forecast to the Scripps Pier forecast with minimum model tuning. The pipeline successfully predicts the occurrence of algal blooms in both regions, with more robustness using WA-LSTM and WA-BPNN than SVR and RFR. The pipeline allows us to find the best results by trying different numbers of neuron hidden layers. The pipeline is easily adaptable to other coastal areas. Experience with the two study regions demonstrated that enrichment of the dataset by including dominant physical processes is necessary to improve chlorophyll prediction when applying it to other aquatic systems. 
    more » « less